DOI: 10.1002/ejic.201100781

Systematic Expansion of Supercubane Cores in Manganese Oxo Clusters with **Tricarboxylate Ligands**

Yayoi Okui,^[a] Florina Aurelia Catusanu,^[a] Ryoko Kubota,^[a] Bunsho Kure,^[a] Takayuki Nakajima, [a] Tomoaki Tanase, *[a] Takashi Kajiwara, [a] Masahiro Mikuriya, [b] Hitoshi Miyasaka, [c] and Masahiro Yamashita [d]

Keywords: Manganese / Carboxylate ligands / Mixed-valent compounds / Cluster compounds / Supercubane cores / Magnetic properties

A novel class of high-nuclearity Mn₁₇ and Mn₁₉ mixed-valent $[Mn_{17}(\mu-O)_{12}(\mu-OMe)_2(\mu-kta)_6(MeOH)_4]$ complexes. $[Mn_{17}(\mu\text{-O})_{14}(\mu\text{-kta})_6L_4]\ [L=bpy\ (\textbf{2a}),\ phen\ (\textbf{2b}),\ 4,7\text{-Ph}_2phen$ (2c), dmf (3)], and $[Mn_{19}(\mu-O)_{14}(\mu-kta)_6(bpy)_6]X_3$ [X = PF₆ (4a), BF₄ (4b)], were synthesized by utilizing Kemp's tricarboxylate ligands (H_3 kta = cis,cis-1,3,5-trimethylcyclohexane-1,3,5-tricarboxylic acid). The complexes were characterized by X-ray crystallography and reveal mineralomimetic Mn₁₃

supercubane units, [Mn $_{13}(\mu$ -O) $_{14}$], in which their oxidation states systematically altered, depending on their vertex facecapping ligands and Mn^{II} satellite fragments. Complex ${\bf 2a}$ was converted by treatment with benzoic acid and $[Mn_2O_2(bpy)_4](BF_4)_3$ to a cage-type Mn_{14} complex, $[Mn_{14}(\mu O_{12}(\mu-OH)_6(\mu-Hkta)_6(bpy)_6[(BF_4)_4(5), which show ferro- and$ antiferromagnetic interactions and slow magnetic relaxation at low temperature.

oxides, under various conditions. Although polydentate ligands with alkoxo, phenoxo, amino, and/or imino groups

were introduced occasionally, systematic synthetic methods

Introduction

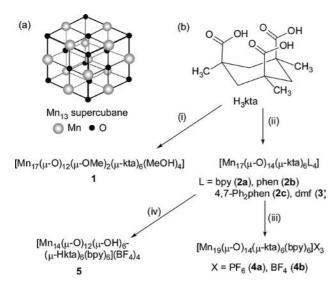
Manganese oxo clusters have been intensively studied since the first finding of single-molecule magnetism (SMM) for the mixed-valent Mn₁₂ complexes, [Mn^{III}₈Mn^{IV}₄O₁₂- $(O_2CR)_{16}(H_2O)_4$ (R = Ph, Me),^[1] and many high-nuclearity complexes (up to Mn₈₄) have been reported with a variety of metal topologies, with an aim at developing nanostructured molecular magnetic devices.[1,2] Furthermore, mixed-valent manganese oxo clusters have attracted extensive attention with relevance to the Mn₄ oxygen-evolving center (OEC) in PS II and mineralomimetic materials.[3] From a synthetic view point, fine-tunable, bottom-up routes should be required to establish manganese clusters with their pursued functions; however, the highest-nuclearity Mn complexes have been prepared by serendipitous assembly with simple bridging ligands, such as carboxylates and alk-

with polycarboxylate ligands are quite limited thus far. Recently, Christou et al. have obtained the mixed-valent metal-centered cuboctahedral Mn₁₃ complexes by utilizing 1,8-naphthalene-dicarboxylic acid (H2ndc), [Mn13O8(OR)6- $(ndc)_6$ (R = H, Me, Et),^[4] and ferrocene-1,1'-dicarboxylic acid (H₂fdc), [Mn₁₃O₈(OMe)₆(fdc)₆],^[5] in which tridecanuclear so-called supercubane structures $\{Mn^{II}_{6}Mn^{III}_{6}Mn^{IV}(\mu_{5}-O)_{6}(\mu_{3}-O)_{2}(\mu_{3}-OR)_{6}\}^{12+}$ are effectively stabilized by the biscarboxylate ligands, although they are not essential for the Mn₁₃ topology.^[4] The synthesis of mineralomimetic Mn₁₃ supercubane cores, which have similar structure to that of rock salt with mixed-valent Mn ions (Scheme 1a), is still limited. However, these supercubane cores present a promising motif for the expansion and control of Mn mixed-valent giant structures. We have tried to establish this strategy by utilizing Kemp's triacid [cis,cis-1,3,5-trimethylcyclohexane-1,3,5-tricarboxylic acid (H₃kta)] (Scheme 1b), [6] since the three carboxylate groups of kta³ are constrained in the same direction, which would be suitable for supporting planar metallic arrays in expanded structures from the supercubane motif. Here, we wish to report the synthesis of Mn₁₇ and Mn₁₉ complexes with kta³⁻ ligands, in which the supercuboidal Mn₁₃ cores are surrounded by four and six MnII ions, respectively. The number of the satellite MnII ions as well as oxo and alkoxo

μ₃-capping groups alter the oxidation state of the Mn₁₃

cores in a specific fashion.

E-mail: tanase@cc.nara-wu.ac.jp


[b] Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda-shi, Hyogo 669-1337, Japan

[c] Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University,

Kakuma-machi, Kanazawa-shi, Ishikawa 920-1192, Japan Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai-shi, Miyagi 980-8578,

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejic.201100781.

[[]a] Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-nishi-machi, Nara, 630-8506, Japan Fax: +81-742-20-3847

Scheme 1. The structures of Mn_{13} supercubane (a) and H_3 kta with its reactions (b); (i) $[nBu_4N][OH]$, $Mn(OAc)_2\cdot 4H_2O$, MeOH; (ii) $[nBu_4N][OH]$, $Mn(OAc)_2\cdot 4H_2O$, $KMnO_4$, L (bpy, phen, 4,7-Ph₂phen, or dmf); (iii) ferrocene, $[Mn_2O_2(bpy)_4]X_3$ ($X = PF_6$, BF_4); (iv) PhCOOH, $[Mn_2O_2(bpy)_4](BF_4)_3$.

Results and Discussion

When Mn(OAc)₂·4H₂O was treated with H₃kta and [nBu₄N][OH] in an acetonitrile/acetone/methanol mixed solvent and the product was crystallized from methanol, dark brown crystals of [Mn₁₇O₁₂(OMe)₂(kta)₆(MeOH)₄] (1) were obtained in 20% yield. The structure was determined by X-ray crystallography and reveals a supercubane core $[Mn_{13}(\mu_5-O)_6(\mu_4-O)_4(\mu_3-O)_2(\mu_3-OMe)_2]^{10+}$ surrounded by four Mn^{II}(MeOH) satellites through μ₄-oxo units; the overall Mn₁₇ structure is supported by six kta³ ligands and possesses a C_i symmetry (Figure 1a). The oxidation states of the Mn ions were determined by bond valence sum (BVS) analyses (Table S1)[7] and by consideration of charge, structural parameters, and Jahn-Teller distortion for the Mn^{III} centers (axial elongation for Mn4, Mn5 and planar for Mn2, Mn7). The Mn^{IV}-centered (Mn1) supercube (Figure 1b), in which the midpoints of its edges are occupied by four Mn^{II} ions (Mn3/3*, Mn6/6*) and eight Mn^{III} ions (Mn2/2*, Mn4/4*, Mn5/5*, Mn7/7*), has eight vertices bridged by two μ_3 -methoxo (O7/7*), two μ_3 -oxo (O1/1*), and four μ_4 -oxo (O5/5*, O6/6*) groups; the latter further connect to the satellite MnII atoms (Mn8/8*, Mn9/9*), which adopt a five-coordinate trigonal-bipyramidal structure with a labile methanol coordination ($\tau = 0.76-0.86$).^[9] The six kta³ ligands notably support two trans- and four cis-Mn₆O₅ planar units, which are fused to complete the Mn₁₇ structure (see Figure S1); in other words, six faces of the Mn₁₃ cube are supported by each kta³⁻ ligand. The structure can also be viewed as three metallic layers along the O1-Mn1-O1* [Mn^{IV}(μ_3 -O)₂] axis; the Mn^{IV}-centered hexagonal plane (Mn1, Mn3/3*, Mn6/6*, Mn7/7*) is sandwiched by two MnIII triangles [(Mn2, Mn4, Mn5*) and (Mn2*, Mn4*, Mn5)] [Figure 2a (right)]. These layers are arranged in a staggered form to make up a cuboctahedral

metallic framework, which is composed of six square planes and eight equilateral triangles. The six peripheral triangles surrounding the $Mn^{IV}(\mu_3\text{-}O)_2$ axis are facially capped by two MeO^- and four $OMn^{II}(MeOH)$ fragments [Figure 2a (left)]. The oxidation state of the hexagonal Mn ions,

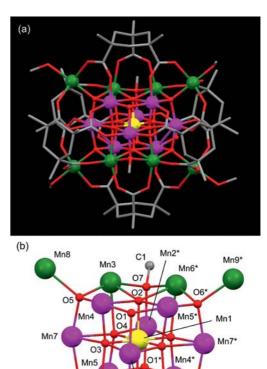


Figure 1. (a) Perspective drawing of complex 1. The kta^{3-} ligands and MeOH are drawn as stick models and the hydrogen atoms are omitted for clarity. The Mn atoms and the atoms of the oxo and methoxy groups are drawn as arbitrary spheres. Mn^{II} (green), Mn^{III} (violet), Mn^{IV} (yellow), O (red), and C (gray). (b) Perspective view of the Mn_{17} cluster core with the atomic numbering scheme.

05*

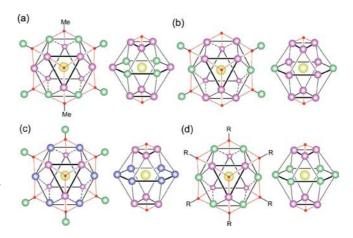


Figure 2. The three-layered metallic frameworks of (a) the Mn_{17} alkoxo complex of 1, (b) Mn_{17} oxo complexes (2 and 3), (c) Mn_{19} complex 4, and (d) Mn_{13} complexes,^[4,5] viewed along (left) and vertical to (right) the $Mn^{IV}(\mu_3\text{-O})_2$ axis. R=H, Me, Et; Mn^{II} (green), Mn^{II} (violet), Mn^{IV} (yellow), $Mn^{2.5+}$ (blue), and O (red).

 $\{Mn^{II}_{4}Mn^{III}_{2}\}$, is markedly different from that of the Mn_{13} supercubane complexes, {MnII₆} (Figure 2d),^[4,5] because of the introduction of four OMn^{II} satellite units instead of alkoxo and hydroxo groups.

When an acetonitrile/acetone solution containing H₃kta and [nBu₄N][OH] was added to a MeCN solution of Mn(OAc)₂·4H₂O and KMnO₄ in the presence of 2,2'-bipyridyl (bpy), 1,10-phenanthroline (phen), 4,7-diphenyl-1,10phenanthroline (4,7-Ph₂phen) or N,N-dimethylformamide (dmf), a series of Mn₁₇ complexes formulated as $[Mn_{17}O_{14}(kta)_6L_4]$ [L = bpy (2a), phen (2b), 4,7-Ph₂phen (2c), and dmf (3)] were synthesized in 10-35% yield (Scheme 1). The structures of 2c and 3 were determined by X-ray crystallography and reveal a supercubane core, $[Mn_{13}(\mu_3-O)_4(\mu_4-O)_4(\mu_5-O)_6]^{10+}$, surrounded by four Mn^{II} satellite units with a 4,7-Ph₂phen and dmf ligand, which are further supported by six kta³⁻ ligands as in 1 (Figures 3 and S2). The satellite Mn^{II} ions adopt distorted [N₂O₄] octahedral and [O₅] trigonal-bipyramidal structures in 2c and 3, respectively. The overall Mn₁₇ structures of 2c and 3 apparently resemble that of 1 in that they are composed of three metallic layers [Figure 2b (right)], but the oxidation states of the hexagonal Mn ions remarkably vary from {MnII₄MnIII₂} of 1 to {MnII₂MnIII₄} upon replacement of

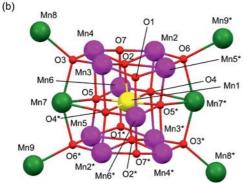
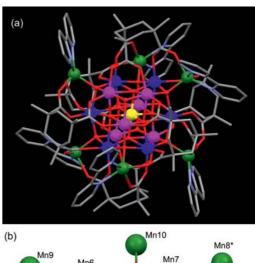



Figure 3. (a) Perspective drawing of complex 2c. The kta³⁻ ligands and phen units are drawn as stick models, and the phenyl groups and hydrogen atoms are omitted for clarity. The Mn atoms and the atoms of the oxo groups are drawn as arbitrary spheres. Mn^{II} (green), MnIII (violet), MnIV (yellow), O (red), N (light blue), and C (gray). (b) Perspective view of the Mn_{17} cluster core with the atomic numbering scheme.

the two μ_3 -methoxy groups by two μ_3 -oxo ones [Figure 2b] (left)]; the oxidation states of the two triangle Mn₃ and the central Mn ions remain as {Mn^{III}₃} and Mn^{IV}, respectively. Metal-metal interactions were investigated on the basis of the temperature dependence of the dc magnetic susceptibility measured for 1, 2c, and 3 (Figure S3), which indicates dominant antiferromagnetic interactions within the molecules.

Some attempts have also been made to examine the reactivity of the Mn₁₇ complexes as a high-nuclearity building block or precursor. When complex 2a was treated with ferrocene followed by $[Mn_2O_2(bpy)_4]X_3$ (X = PF₆, BF₄), [9] dark brown crystals of $[Mn_{19}O_{14}(kta)_6(bpy)_6]X_3$ [X = PF₆ (4a), BF₄ (4b)] were obtained in 24–37% yield (Scheme 1). The Mn₁₉ complex cation of **4a** possesses a +3 charge and has a crystallographically imposed inversion center at the central Mn^{IV} atom (Mn1) or a pseudo-S₆ symmetry around the O2–Mn1–O2* [Mn^{IV}(μ_3 -O)₂] axis (Figure 4). The supercubane core $[Mn_{13}(\mu_3-O)_2(\mu_4-O)_6(\mu_5-O)_6]^{9+}$ is surrounded by six $Mn^{II}(bpy)$ satellites through the μ_4 -oxo bridges that cap the peripheral Mn_3 triangles around the S_6 axis. The six kta³ ligands show an essentially identical bridging mode supporting only a cis-Mn₆O₅ planar array (see Figure S1b).

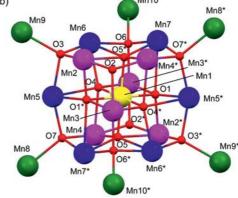
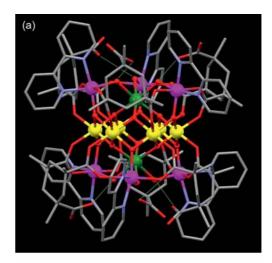



Figure 4. (a) Perspective drawing for complex cation of 4a. The kta³⁻ ligands and bpy units are drawn as stick models and the hydrogen atoms are omitted for clarity. The Mn atoms and the atoms of the oxo groups are drawn as arbitrary spheres. Mn^{II} (green), Mn^{III} (violet), Mn^{IV} (yellow), Mn^{2.5+} (blue), O (red), N (light blue), and C (gray). (b) Perspective view of the Mn₁₉ cluster core with the atomic numbering scheme.

The Mn^{II} satellite ions have a distorted square-pyramidal geometry ($\tau = 0.11-0.19$) with an $[N_2O_3]$ donor set. The most conspicuous part is observed in the middle hexagonal Mn₇ layer (Figure 2c). The Mn ions at the hexagonal vertices (Mn5/5*, Mn6/6*, Mn7/7*) exhibit an identically distorted structure between those of the MnII and MnIII ions with a BVS value of 2.27-2.48 and no axial distortion, which demonstrates a delocalized oxidation state of +2.5. Given that Mn1/1*, Mn2-4/2*-4*, and Mn8-10/8*-10* ions are assigned to Mn^{IV}, Mn^{III}, and Mn^{II}, respectively, on the basis of BVS analysis, charge-valance consideration indicates that the six hexagonal Mn ions around the central Mn^{IV} ion in the middle layer should have a {Mn^{II}₃Mn^{III}₃} oxidation state; presumably an alternative mixed-valent structure {Mn^{II}Mn^{III}}₃ might be detrapped as {Mn^{2.5+}}₆ even at the low temperature of -120 °C. Valence-detrapped Mn clusters are relatively limited, [10] and the present structure may provide a useful model to study spin-delocalized, high-nuclearity systems. Variable-temperature dc magnetic susceptibility data of 4b, similar to those of 1, indicate dominant antiferromagnetic interactions within the molecule (see Figure S4).

Treatment of complex 2a in dmf with benzoic acid followed by [Mn₂O₂(bpy)₄](BF₄)₃ afforded a novel cage-type Mn_{14} complex, $[Mn_{14}O_{12}(OH)_6(Hkta)_6(bpy)_6](BF_4)_4$ (5), in 15% yield (Scheme 1). The Mn_{14} cage, $[Mn_{14}(\mu_3-O)_{12}(\mu_2-D)_{12}(\mu_3-D)_{12}(\mu$ $OH)_6]^{16+}$, has C_i symmetry (a pseudo- S_6 symmetry is expected from the crystal structure, see Figure 5)[7] and is composed of a planar $Mn^{IV}_{6}(\mu_{3}\text{-O})_{12}$ hexagon (Mn2/2*, Mn3/3*, Mn4/4*), which is sandwiched by two {Mn^{III}(bpy)}₃ triangles (Mn5, 6*, 7*; Mn5*, 6, 7) through three µ₃-oxo groups for each layer. These features are reminiscent of the Mn₁₃ supercube layered structure and are recognized to arise as a result of it opening out with removal of the central Mn^{IV} ion. Two Mn^{II} ions (Mn1/1*) are further incorporated in between each layers through three u₃oxo groups to the Mn^{IV}_{6} layer and through three μ_2 -hydroxo groups to the Mn^{III}₃ layer, to complete the Mn₁₄ cage, which is supported by six Hkta²⁻ ligands. The uncoordinated carboxylic group of each Hkta2- forms hydrogenbonding interactions with the µ2-hydroxo group (O···O 2.943-2.994 Å). While a similar tetradecanuclear cage structure was observed in $[Fe^{III}_{14}(bta)_6O_6(OMe)_{18}Cl_6]$ (Hbta = benzotriazole),^[11] the Mn₁₄ cage structure of 5 has not been reported thus far and is featured by the unprecedented Mn^{IV}₆(μ-O)₁₂ hexagonal ring, which is interestingly in contrast to the Mn-centered Mn₇ hexagonal common motifs.[2a,12]

The $\chi_{\rm M}T$ value of 5 (Figure S5a) decreases gradually from $32 \text{ cm}^3 \text{ K mol}^{-1}$ (300 K) to $26 \text{ cm}^3 \text{ K mol}^{-1}$ (130 K) and then rapidly increases to reach 47 cm³ K mol⁻¹ at 5 K; at 2 K, it falls to 40 cm³ K mol⁻¹. This indicates that both ferro- and antiferromagnetic interactions exist in the molecules. The preliminary ac susceptibility data were measured (Figure S5), and frequency-dependent out-of-phase $(\chi_{M}^{"})$ ac susceptibility signals are observed below ca. 2.7 K (Figure S5b), which indicate slow magnetic relaxation, although no peaks are observed.

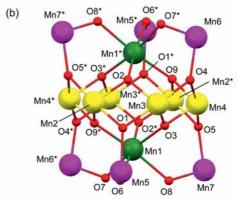


Figure 5. (a) Perspective drawing for complex cation of 5. The Hkta²⁻ ligands and bpy units are drawn as stick models and the hydrogen atoms are omitted for clarity. The Mn atoms and the atoms of the oxo and hydroxo groups are drawn as arbitrary spheres. Mn^{II} (green), Mn^{III} (violet), Mn^{IV} (yellow), O (red), N (light blue), and C (gray). The green thin lines show hydrogen bonds between COOH of Hkta²⁻ and the μ₂-OH units. (b) Perspective view of the Mn₁₄ cluster core with the atomic numbering

Conclusions

A novel class of high-nuclearity Mn₁₇ and Mn₁₉ complexes including Mn_{13} supercubane cores are synthesized by utilizing Kemp's tricarboxylate ligands, which are able to support planar Mn₆O₅ motifs. The oxidation states of the Mn_{13} supercube are systematically altered depending on its vertex face-capping ligands, which include μ-oxo, hydroxo, and alkoxo groups and $\mu\text{-OMn}^{\mathrm{II}}$ satellite fragments, $\{Mn^{IV}Mn^{III}{}_6Mn^{II}{}_6\} \hspace{0.5cm} \text{to} \hspace{0.5cm} \{Mn^{IV}Mn^{III}{}_8Mn^{II}{}_4\},$ $\{Mn^{IV}Mn^{III}{}_{6}Mn^{2.5+}{}_{6}\}, \text{ and } \{Mn^{IV}Mn^{III}{}_{10}Mn^{II}{}_{2}\}. \text{ The }$ Mn₁₇ complex could also be converted to an opened-out Mn_{14} cage structure, which has a high-valent $Mn^{IV}_{6}(\mu-O)_{12}$ hexagonal moiety. The present results could provide a new synthetic strategy for high-nuclearity manganese oxo clusters by use of mineralomimetic Mn₁₃O₁₄ supercubane motifs.

Experimental Section

[Mn₁₇O₁₂(OMe)₂(kta)₆(MeOH)₄]·MeOH (1·MeOH): To a solution of Kemp's triacid (308 mg, 1.2 mmol) in methanol (40 mL) was added a 10% methanolic solution of tetra-n-butyl ammonium hydroxide [nBu₄N][OH] (11.5 mL, 3.6 mmol), and the solution was stirred at room temperature for 40 min. The solution was concentrated to dryness and the residue was extracted with acetone (20 mL) and acetonitrile (40 mL) with sonication. The extract was then added to a solution of Mn(CH₃COO)₂·4H₂O (353 mg, 1.44 mmol) in acetonitrile (40 mL), and the mixture was stirred for 12 h. The resultant brown solution was concentrated to dryness, and the residue was extracted with methanol, which was passed through a glass filter and allowed to stand at room temperature to yield dark brown crystals of [Mn₁₇O₁₂(OMe)₂(kta)₆(MeOH)₄]· MeOH (1·MeOH). The crystals were collected, washed with methanol and diethyl ether, and dried under vacuum (106 mg, vield 20%) vs. H₃kta). C₇₉H₁₁₆Mn₁₇O₅₅ (2879.70): calcd. C 32.95, H 4.06; found C 32.52, H 4.26. IR (KBr): $\tilde{v} = 1576$ (s), 1469 (m), 1442 (w), 1401 (s), 1362 (w), 1209 (m), 1007 (m), 780 (m), 577 (b) cm⁻¹.

 $[Mn_{17}O_{14}(kta)_{6}(bpy)_{4}] \cdot 6CH_{2}Cl_{2} \cdot 4H_{2}O \ (2a \cdot 6CH_{2}Cl_{2} \cdot 4H_{2}O) \colon A \ 10 \%$ methanol solution of [nBu₄N][OH] (1.54 mL, 0.480 mmol) was added to a solution of Kemp's triacid (62 mg, 0.240 mmol) in methanol (10 mL) with stirring. After 30 min, the solvent was removed under reduced pressure, and the residue was dissolved in acetonitrile/acetone (2:1) solution (9 mL). The solution was then added to an acetonitrile solution (10 mL) containing Mn(CH₃COO)₂·4H₂O (56 mg, 0.23 mmol), KMnO₄ (16 mg, 0.10 mmol), and bpy (2,2'bipyridine) (9.7 mg, 0.062 mmol). The reaction mixture was stirred overnight and then concentrated under reduced pressure to dryness. The residue was extracted with CH₂Cl₂ (9 mL), followed by filtration to remove the inorganic salts. The extract was allowed to stand at room temperature for few days to afford dark brown crystals of $[Mn_{17}O_{14}(kta)_6(bpy)_4] \cdot 6CH_2Cl_2 \cdot 4H_2O$ (2a·6CH₂Cl₂·4H₂O) (38 mg, yield 24% vs. H_3 kta). $C_{118}H_{142}Cl_{12}Mn_{17}N_8O_{54}$ (3895.82): calcd. C 36.38, H 3.67, N 2.88; found C 36.47, H 3.72, N 2.78. IR (KBr): $\tilde{v} = 1591$ (s), 1465 (m), 1440, 1392 (s), 1360, 1210 (m), 766 (m), 581 (s) cm⁻¹.

[Mn₁₉O₁₄(kta)₆(bpy)₄](PF₆)₃ (4a): To a dmf solution (10 mL) containing 2a·6CH₂Cl₂·4H₂O (15 mg, 4.0 μmol) was added ferrocene (16 mg, 0.087 mmol), and the reaction solution was stirred at room temperature for 12 h. After addition of [Mn₂O₂(bpy)₄](PF₆)₃·2H₂O (52 mg, 0.043 mmol), the mixture was stirred for another 12 h. The solvent was then removed under reduced pressure, and the residue was extracted with CH₂Cl₂ (ca. 9 mL), which was passed through a glass filter and allowed to stand at room temperature for 2–3 d to yield dark brown crystals of [Mn₁₉O₁₄(kta)₆(bpy)₄](PF₆)₃·0.5dmf (4a·0.5dmf) (6.1 mg, yield 37% vs. 2a). C₁₃₂H₁₃₈F₁₈Mn₁₉N₁₂O₅₀P₃ (4171.30): calcd. C 38.01, H 3.33, N 4.03; found C 38.43, H 3.48, N 3.98. IR (KBr): \tilde{v} = 1586 (s), 1466 (m), 1441 (m), 1393 (s), 1362, 1313, 1210, 1018, 847 (s), 769, 739, 557 (m) cm⁻¹.

[Mn₁₄O₁₂(OH)₆(Hkta)₆(bpy)₆](BF₄)₄·CH₂Cl₂ (5·CH₂Cl₂): To a dmf solution (10 mL) containing 2a·6CH₂Cl₂·4H₂O (30 mg, 7.8 μmol) was added benzoic acid (42 mg, 0.34 mmol) with stirring. After the reaction solution was stirred at room temperature for 12 h, [Mn₂O₂(bpy)₄](BF₄)₃·2H₂O (90 mg, 0.085 mmol) was added to the solution, which was stirred for another 12 h. The solvent was removed under reduced pressure, and the residue was extracted with CH₂Cl₂ (ca. 9 mL), which was passed through a glass filter and allowed to stand at room temperature for several days to give [Mn₁₄O₁₂(OH)₆(Hkta)₆(bpy)₆](BF₄)₄·CH₂Cl₂ (5·CH₂Cl₂) (4.6 mg, yield 15% vs. 2a). C₁₃₃H₁₅₂B₄Cl₂F₁₆Mn₁₄N₁₂O₅₄ (3969.96): calcd. C 40.24, H 3.86, N 4.23; found C 40.28, H 3.91, N 4.25. IR (KBr):

 $\bar{v} = 1603$ (s), 1500, 1472, 1450 (s), 1395 (s), 1341, 1281, 1205, 1036 (s), 773 (m), 729, 664, 519 (m) cm⁻¹.

Crystallography: Crystal data for 1·10MeOH (C₈₈H₁₅₂Mn₁₇O₆₄): $M_{\rm r} = 3168.08 \ (0.45 \times 0.20 \times 0.10 \ {\rm mm}); \ {\rm triclinic}; \ P\bar{1} \ ({\rm no.} \ 2); \ a =$ 14.577(2), b = 14.568(2), c = 18.376(3) Å; a = 114.264(8), $\beta = 114.264(8)$ 65.908(8), $\gamma = 116.156(8)^{\circ}$; $V = 3067.9(8) \text{ Å}^3$; Z = 1; $\rho_{\text{calcd.}} = 1$ 1.715 g cm⁻³; F(000) = 1617; Mo- K_{α} radiation ($\lambda = 0.71070 \text{ Å}$, $\mu =$ 17.77 cm⁻¹); T = -120 °C; a total of 13959 unique reflections (R_{int} = 0.036) were collected with a Rigaku/MSC Mercury CCD diffractometer (6 < 2θ < 55.0°); R1 = 0.053 [10309 reflections, $I > 2\sigma(I)$]; wR2 = 0.136 for 783 variables. Crystal data for $2c \cdot 8CH_2Cl_2 \cdot 8H_2O$ $(C_{176}H_{186}Cl_{16}Mn_{17}N_8O_{58})$: $M_r = 4842.62$ $(0.20 \times 0.20 \times 0.05 \text{ mm})$; triclinic; $P\bar{1}$ (no. 2); a = 17.850(3), b = 17.850(3)17.751(2), c = 17.664(2) Å; a = 97.431(4), $\beta = 110.184(5)$, $\gamma =$ 97.497(3)°; $V = 5116.2(12) \text{ Å}^3$; Z = 1; $\rho_{\text{calcd}} = 1.572 \text{ g cm}^{-3}$; F(000)= 2459; Mo- K_{α} radiation (λ = 0.71070 Å, μ = 12.97 cm⁻¹); T = -120 °C; a total of 22956 unique reflections ($R_{\rm int} = 0.061$) were collected with a Rigaku/MSC Mercury CCD diffractometer $(6 < 2\theta < 55.0^{\circ}); R1 = 0.107 [18193 \text{ reflections}, I > 2\sigma(I)]; wR2 =$ 0.302 for 1253 variables. Crystal data for 3.10CH₂Cl₂ $(C_{94}H_{138}Cl_{20}Mn_{17}N_4O_{54}): M_r = 3831.12 (0.50 \times 0.45 \times 0.43 \text{ mm});$ monoclinic; $P2_1/n$ (no. 14); a = 19.6220(9), b = 18.9211(9), c = 19.6220(9)18.6083(8) Å; $\beta = 91.503(4)^{\circ}$; $V = 6906.3(5) Å^3$; Z = 2; $\rho_{\text{calcd}} =$ 1.842 g cm⁻³; F(000) = 3854; Mo- K_{α} radiation ($\lambda = 0.71070 \text{ Å}$, $\mu =$ 19.65 cm⁻¹); T = -120 °C; a total of 15536 unique reflections (R_{int} = 0.019) were collected with a Rigaku/MSC Mercury CCD diffractometer (6 < 2θ < 55.0°); R1 = 0.040 [14051 reflections, $I > 2\sigma(I)$; wR2 = 0.104 for 857 variables. Crystal data for **4a**·11CH₂Cl₂ (C₁₄₃H₁₆₀Cl₂₂F₁₈Mn₁₉N₁₂O₅₀): $M_r = 5105.57 (0.35 \times 10^{-2})$ 0.30×0.30 mm); triclinic; $P\bar{1}$ (no. 2); a = 16.7822(4), b =19.5146(4), c = 19.7290(5) Å; a = 60.257(7), $\beta = 70.382(9)$, $\gamma =$ 87.386(11)°; $V = 5226.2(2) \text{ Å}^3$; Z = 1; $\rho_{\text{calcd.}} = 1.622 \text{ g cm}^{-3}$; F(000)= 2558; Mo- K_{α} radiation (λ = 0.71070 Å, μ = 14.93 cm⁻¹); T = -120 °C; a total of 23114 unique reflections ($R_{\rm int} = 0.035$) were collected with a Rigaku/MSC Mercury CCD diffractometer (6< $2\theta < 55.0^{\circ}$); R1 = 0.119 [22138 reflections, $I > 2\sigma(I)$]; wR2 = 0.334 for 1304 variables. Crystal data for 5.4CH₂Cl₂.23H₂O $(C_{136}H_{204}B_4Cl_8F_{16}Mn_{14}N_{12}O_{77}): M_r = 4639.11 (0.20 \times 0.20 \times 0.20)$ 0.15 mm); triclinic; $P\bar{1}$ (no. 2); a = 17.4934(2), b = 17.9290(1), c =19.0966(7) Å; $\alpha = 76.786(19)$, $\beta = 72.239(17)$, $\gamma = 65.209(16)^\circ$; V =5143.1(8) Å³; Z = 1; $\rho_{\text{calcd.}} = 1.498 \text{ g cm}^{-3}$; F(000) = 2370; Mo- K_{α} radiation ($\lambda = 0.71070 \text{ Å}, \mu = 10.30 \text{ cm}^{-1}$); T = -120 °C; a total of 23144 unique reflections ($R_{\text{int}} = 0.038$) were collected with a Rigaku/MSC Mercury CCD diffractometer (6 < 2θ < 55.0°); R1 = 0.112 [18028 reflections, $I > 2\sigma(I)$]; wR2 = 0.338 for 1280 variables. CCDC-828109 (1), -828110 (2c), -828111 (3), -828112 (4a), and -828113 (5) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif. The perspective plots of complex 3 are available in the Supporting Information.

Supporting Information (see footnote on the first page of this article): Synthetic details (2b, 2c, 3, and 4b), BVS analyses for 1, 2c, 3, 4a, and 5, the bridging structures of kta³⁻, the X-ray structure of 3, dc magnetic data for 1, 2c, 3, 4b, and 5, and ac magnetic data for 5 are presented.

Acknowledgments

This work was partly supported by Grants-in-Aid for Scientific Research and by the Ministry of Education, Science, Sports, and Culture of Japan for Priority Area 2107 (no. 22108521). T. T. is grateful to Nara Women's University for a research project grant.

- [1] a) R. Sessoli, H.-L. Tsai, A. R. Schake, S. Wang, J. B. Vincent, K. Folting, D. Gatteschi, G. Christou, D. N. Hendrickson, J. Am. Chem. Soc. 1993, 115, 1804–1816; b) R. Sessoli, D. Gatteschi, A. Caneschi, M. A. Novak, Nature 1993, 365, 141–143; c) D. Gatteschi, R. Sessoli, Angew. Chem. 2003, 115, 278–309; Angew. Chem. Int. Ed. 2003, 42, 268–297; d) R. Winpenny (Ed.), Single-Molecule Magnets and Related Phenomena, Springer Heidelberg, 2010; e) R. Winpenny (Ed.), Molecular Cluster Magnets, World Scientific Series in Nanoscience and Nanotechnology, World Scientific Pub. Co. New Jersey, 2011.
- [2] a) G. E. Kostakis, A. M. Ako, A. K. Powell, Chem. Soc. Rev. 2010, 39, 2238–2271; b) A. J. Tasiopoulos, A. Vinslava, W. Wernsdorfer, K. A. Abboud, G. Christou, Angew. Chem. 2004, 116, 2169–2173; Angew. Chem. Int. Ed. **2004**, 43, 2117–2121; c) R. T. W. Scott, S. Parsons, M. Murugesu, W. Wernsdorfer, G. Christou, E. K. Brechin, Angew. Chem. 2005, 117, 6698-6701; Angew. Chem. Int. Ed. 2005, 44, 6540-6543; d) M. Soler, W. Wernsdorfer, K. Folting, M. Pink, G. Christou, J. Am. Chem. Soc. 2004, 126, 2156-2165; e) C. Dendrinou-Samara, M. Alexiou, C. M. Zaleski, J. W. Kampf, M. L. Kirk, D. P. Kessissoglou, V. L. Pecoraro, Angew. Chem. 2003, 115, 3893-3896; Angew. Chem. Int. Ed. 2003, 42, 3763-3766; f) M. Murugesu, M. Habrych, W. Wernsdorfer, K. A. Abboud, G. Christou, J. Am. Chem. Soc. 2004, 126, 4766-4767; g) S. Maheswaran, G. Chastanet, S. J. Teat, T. Mallah, R. Sessoli, W. Wernsdorfer, R. E. P. Winpenny, Angew. Chem. 2005, 117, 5172-5176; Angew. Chem. Int. Ed. 2005, 44, 5044-5048; h) E. E. Moushi, T. C. Stamatatos, W. Wernsdorfer, V. Nastopoulos, G. Christou, A. J. Tasiopoulos, Inorg. Chem. 2009, 48, 5049-5051.
- [3] a) K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, *Science* 2004, 303, 1831–1838; b) B. Loll, J. Kern, W. Saenger, A. Zouni, J. Biesiadka, *Nature* 2005, 438, 1040–1044; c) J. Yano, K. Yachandra, *Inorg. Chem.* 2008, 47, 1711–1726; d) V. L. Pecoraro, W.-Y. Hsieh, *Inorg. Chem.* 2008, 47, 1765–1778; e) M. Yagi, M. Kaneko, *Chem. Rev.* 2001, 101, 21–35; f) C. Tommos, G. T. Babcock, *Acc. Chem. Res.* 1998, 31, 18–25;

- g) W. Rüttinger, C. Dismukes, *Chem. Rev.* **1997**, 97, 1–24; h) E. Bauerlein, *Angew. Chem.* **2003**, 115, 636–664; *Angew. Chem. Int. Ed.* **2003**, 42, 614–641; i) N. Mita, A. Maruyama, A. Usui, T. Higashihara, Y. Hariya, *Geochem. J.* **1994**, 28, 71–80.
- [4] a) C. Lampropoulos, C. Koo, S. O. Hill, K. Abboud, G. Christou, *Inorg. Chem.* 2008, 47, 11180–11190; b) Z. Sun, P. K. Gantzel, D. N. Hendrickson, *Inorg. Chem.* 1996, 35, 6640–6641.
- [5] a) M. Kondo, R. Shinagawa, M. Miyazawa, M. K. Kabir, Y. Irie, T. Horiba, T. Naito, K. Maeda, S. Utsuno, F. Uchida, *Dalton Trans.* 2003, 515–516; b) A. Masello, M. Murugesu, K. A. Abboud, G. Christou, *Polyhedron* 2007, 26, 2276–2280.
- 6] D. S. Kemp, K. S. Petrakis, J. Org. Chem. 1981, 46, 5140-5143.
- [7] a) W. Liu, H. H. Thorp, *Inorg. Chem.* 1993, 32, 4102–4105; b)
 G. J. Palenik, *Inorg. Chem.* 1997, 36, 4888–4890.
- [8] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349–1356.
- [9] S. R. Cooper, M. Calvin, J. Am. Chem. Soc. 1977, 99, 6623–6630.
- [10] a) J. M. Clemente-Juan, E. Coronado, A. Forment-Aliaga, A. Gaita-Arino, C. Gimenez-Saiz, F. M. Romero, W. Wernsdorfer, R. Biagi, V. Corradini, *Inorg. Chem.* 2010, 49, 386–396; b) M. Sorai, M. Nakano, Y. Miyazaki, *Chem. Rev.* 2006, 106, 976–1031; c) E. K. Brechin, W. Clegg, M. Murrie, S. Parsons, S. J. Teat, R. E. P. Winpenny, *J. Am. Chem. Soc.* 1998, 120, 7365–7366.
- [11] D. M. Low, L. F. Jones, A. Bell, E. K. Brechin, T. Mallah, E. Rivière, S. J. Teat, E. J. L. McInnes, *Angew. Chem.* 2003, 115, 3911–3914; *Angew. Chem. Int. Ed.* 2003, 42, 3781–3784.
- [12] a) A. Ferguson, K. Thomson, A. Parkin, P. Cooper, C. J. Milios, E. K. Brechin, M. Murrie, *Dalton Trans.* 2007, 728–730;
 b) M. A. Bolcar, S. M. J. Aubin, K. Folting, D. N. Hendrickson, G. Christou, *Chem. Commun.* 1997, 1485–1486;
 c) G. L. Abbati, A. Cornia, A. C. Farbretti, A. Caneschi, D. Gatteschi, *Inorg. Chem.* 1998, 37, 3759–3766.

Received: July 27, 2011 Published Online: August 24, 2011